6 obszarów AI kluczowych dla każdego zarządu
Zarządy firm w coraz większym stopniu, w ramach swoich rocznych celów, są rozliczane z uruchamiania systemów opartych o sztuczną inteligencję (AI). Żadna firma nie chce przegrać cyfrowego wyścigu, zwłaszcza w dobie walki o marże i zwiększanie konkurencyjności. Warto zrozumieć, jak z sukcesem na świecie zastosowano technologie AI w kontaktach z klientami czy procesach biznesowych.
Podczas gdy firmy obsługujące masowy ruch klientów (B2C), takie jak Facebook, UBER czy AirBnB, które z łatwością uruchamiają nowe produkty lub usługi oparte o AI, wdrożenie podobnych technologii w modelu B2B – w bankach, towarzystwach ubezpieczeniowych i dużych organizacjach – napotyka na wiele przeszkód natury prawnej, organizacyjnej czy procesowej. Pojawia się nie tylko obawa przed nietrafionymi inwestycjami, ale kwestia ryzyka utraty reputacji firmy w związku z wykorzystaniem sztucznej inteligencji.
Pokusa długofalowych korzyści z wykorzystania AI przeważa jednak obawy. Coraz więcej zarządzających wyższego szczebla (tzw. C-level, zarządy, dyrektorzy) ma w swych corocznych celach wdrażanie nowych rozwiązań opartych o AI. Głównie po to, aby zwiększyć konkurencyjność produktów czy same marże. Istnieją już metody do minimalizowania ryzyka, np. wprowadzanie dodatkowego nadzoru nad danymi wykorzystywanymi do szkolenia algorytmów sztucznej inteligencji.
Największym jednak problemem jest dziś rynkowa mnogość rozwiązań opartych o AI oraz fakt, że zarządzający i liderzy po prostu nie mają wystarczającej wiedzy dotyczącej obszarów, w jakich można AI uruchamiać czy jakiego ROI (zwrot z inwestycji) oczekiwać. Warto więc sprawdzić najlepsze przypadki globalnych zastosowań.
4 główne technologie AI wykorzystywane dziś w przedsiębiorstwach
Rozpoczynając analizę zastosowań AI w przedsiębiorstwach trzeba zrozumieć, jakie dominują tam technologie.
Technologia #1
Machine Learning (ML) czyli podstawowa technologia, polegająca na zdolności modeli statystycznych do rozwijania umiejętności i poprawy ich wyników, w tym dokładności w czasie, bez konieczności stosowania się do wyraźnie zaprogramowanych instrukcji.
Technologia #2
Deep Learning – złożona forma ML obejmująca sieci neuronowe, z wieloma warstwami zmiennych abstrakcyjnych. Głębokie modele uczenia się są doskonałe do rozpoznawania obrazu i mowy, ale są trudne lub często niemożliwe do zinterpretowania przez człowieka.
Technologia #3
Conversational AI, w tym Natural Language Processing – umiejętność wydobywania lub generowania znaczenia zapytania lub wypowiedzi, w tym intencji z tekstu, w czytelnej, naturalnej stylistycznie i poprawnej gramatycznie formie, a także prowadzenia wirtualnej konwersacji między użytkownikiem a maszyną.
Technologia #4
Computer Vision – umiejętność wydobywania znaczenia i intencji z elementów wizualnych, zarówno postaci (w przypadku digitalizacji dokumentów), jak i kategoryzacji treści – w obrazach takich jak twarze, obiekty, sceny i działania.
Każda z tych technologii rozwiązuje inne problemy, każda daje znacząco różne zwroty z inwestycji i korzyści. Niewłaściwie zastosowana nie tylko nie pomoże w automatyzacji, ale wręcz może powodować zwiększenie pracy manualnej. Poniżej znajdują się przykłady zastosowań najczęściej wykorzystywanej z tych technologii – Conversational AI.
Wykorzystałeś swój limit bezpłatnych treści
Pozostałe 70% artykułu dostępne jest dla zalogowanych użytkowników portalu. Zaloguj się, wybierz plan abonamentowy albo kup dostęp do artykułu/dokumentu.